Protein design simulations suggest that side-chain conformational entropy is not a strong determinant of amino acid environmental preferences.
نویسندگان
چکیده
Loss of side-chain conformational entropy is an important force opposing protein folding and the relative preferences of the amino acids for being buried or solvent exposed may be partially determined by which amino acids lose more side-chain entropy when placed in the core of a protein. To investigate these preferences, we have incorporated explicit modeling of side-chain entropy into the protein design algorithm, RosettaDesign. In the standard version of the program, the energy of a particular sequence for a fixed backbone depends only on the lowest energy side-chain conformations that can be identified for that sequence. In the new model, the free energy of a single amino acid sequence is calculated by evaluating the average energy and entropy of an ensemble of structures generated by Monte Carlo sampling of amino acid side-chain conformations. To evaluate the impact of including explicit side-chain entropy, sequences were designed for 110 native protein backbones with and without the entropy model. In general, the differences between the two sets of sequences are modest, with the largest changes being observed for the longer amino acids: methionine and arginine. Overall, the identity between the designed sequences and the native sequences does not increase with the addition of entropy, unlike what is observed when other key terms are added to the model (hydrogen bonding, Lennard-Jones energies, and solvation energies). These results suggest that side-chain conformational entropy has a relatively small role in determining the preferred amino acid at each residue position in a protein.
منابع مشابه
Entropy reduction in unfolded peptides (and proteins) due to conformational preferences of amino acid residues.
As established by several groups over the last 20 years, amino acid residues in unfolded peptides and proteins do not exhibit the unspecific random distribution as assumed by the classical random coil model. Individual amino acid residues in small peptides were found to exhibit different conformational preferences. Here, we utilize recently obtained conformational distributions of guest amino a...
متن کاملEstimates of the loss of main-chain conformational entropy of different residues on protein folding.
The average contribution of conformational entropy for individual amino acid residues towards the free energy of protein folding is not well understood. We have developed empirical scales for the loss of the main-chain (torsion angles, phi and psi) conformational entropy by taking its side-chain into account. The analysis shows that the main-chain component of the total conformational entropy l...
متن کاملComputational protein design with side-chain conformational entropy.
Recent advances in modeling protein structures at the atomic level have made it possible to tackle "de novo" computational protein design. Most procedures are based on combinatorial optimization using a scoring function that estimates the folding free energy of a protein sequence on a given main-chain structure. However, the computation of the conformational entropy in the folded state is gener...
متن کاملFlexible backbone sampling methods to model and design protein alternative conformations.
Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remain experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping...
متن کاملRole of electrostatic screening in determining protein main chain conformational preferences.
Amino acids display significant variation in propensity for the alpha R-helical, beta-sheet, and other main chain conformational states in proteins and peptides. The physical reason for these preferences remains controversial. Conformational entropy, steric factors, and the hydrophobic effect have all been advanced as the dominant underlying cause. In this work, we explore the role of a fourth ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 62 3 شماره
صفحات -
تاریخ انتشار 2006